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Aim
To build a large cohort of Benign-MPM tissue pairs, plus the technologies and infrastructure 
needed to 
• Design effective MPM therapies 

• Deliver future human trials, particularly in early stage disease or chemoprophylaxis

Key Questions
• How does asbestos-driven chronic inflammation evolve into MPM? What are the key 

molecular events and vulnerabilities?

• Can individuals destined to develop MPM be identified at a pre-malignant stage?

• Can suitable treatment response tools be validated? 

PREDICT-Meso Aim and Key Questions



Plan

• Background: Why are new response tools needed?
• From modified RECIST to Volumetric Tumour Quantification
• Deployment of Volumetry on CT
• Development of Automated Volumetric Segmentation using the 

PRISM study cohort
• Next steps in Work Package 5
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Figure 1.7 T1-weighted axial (Panel A) and coronal (Panel B) fat-saturated VIBE 

images of two patients with Malignant Pleural Mesothelioma, taken post-contrast 

using a 3T Siemens Magnetom Verio® MR scanner at the BHF Glasgow 

Cardiovascular Imaging Facility (Panel A) and a 3T Siemens Magnetom PRISMA® 

MR scanner at the Glasgow Clinical Research Imaging Facility, QEUH (Panel B). 

Panel A demonstrates enhancing pleural tumour and Panel B demonstrates 

nodular pleural thickening with chest wall invasion 
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How can we possibly assess response to 
therapy? 

• Thickness associated with decreased OS and increased stage 1

• Modified RECIST: Sum of 2 unidimensional measurements on 3 axial CT slices
• Compare summed values after treatment with baseline measures
• Partial Response (PR) and Progressive Disease (PD): -30% and +20% changes 

1. To ensure accuracy, all measurements must be per-
formed electronically in the same window setting on
consecutive studies. We recommend using the “soft
tissue” setting (not lung windows), as it enables accu-
rate pleural mass measurements with the electronic
calipers and avoids the incorporation of chest wall or
mediastinal fat within the calculations, which are not as
easily identified when using lung windows.

2. CT scan slices up to 5 mm can be used, but for greater
accuracy, thinner slices such as 2.5 mm are preferable.
Ideally, all subsequent CT scans should use the same
slice thickness.

3. To limit interobserver variability in measuring tumor re-
sponse, it is preferred that the same clinician measure the
tumors at baseline and on all subsequent CT scans.

4. The pleural disease to be measured should have a
short-axis diameter of at least 1 cm, as lesions less than
1 cm are considered nonmeasurable.

5. To obtain the short axis of the disease, with electronic
calipers, measure the distance between the point where the
tumor abuts the chest or the mediastinal border and the

point where the pleural disease touches normal lung (Fig-
ure 1A). The shortest route possible is the one perpendic-
ular to the chest wall/mediastinum.

6. Avoid measuring regions where tumor infiltration ob-
scures the interface of tumor to normal tissue. A good
interface for measurement is usually one where the tumor
abuts fat or an intact rib/vertebral body, as the density of
the pleural tumor differs significantly from bone or fat and
the difference can be easily observed. Avoid choosing an
interface of tumor with muscle, as muscle and tumor have
similar CT densities and are often difficult to distinguish
when they abut one another (Figure 1).

7. Following the instructions in 5, choose three different
axial slices, preferably above the level of the main
bronchi and record two measurements per slice, thus
resulting in six separate measurements (Figure 3).

8. If any additional nodal, subcutaneous or other bidi-
mensionally measureable lesions are available, they
should undergo unidimensional measurements by RE-
CIST version 1.1 and be added to the total obtained
from 7.

FIGURE 3. Comparison of tumor
measurements using the updated
RECIST criteria version 1.1 (i, iii, v) and
the modified RECIST criteria (ii, iv, vi).
*Although additional measurements
were made of the pleural tumor in the
patient example (see Figure 3i.); by
RECIST version 1.1, only the 2 longest
measurements of the pleural tumor are
used in calculating the total RECIST v.
1.1 measurement. For the example,
this patient had pleural tumor mea-
surements of 5.3 cm, 6.1 cm, 10.9 cm,
and 8.2 cm. The 2 longest measure-
ments (10.9 cm, 8.2 cm) were chosen
to be added together for the total
RECIST v1.1 measurement (19.1 cm).
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Limitations of Modified RECIST

• Gross over-simplification of disease and response
• Radiologist required to replicate measurement sites
• Unsurprisingly, up to 30% variation between reporters 1

• PFS correlates poorly with OS in Mesothelioma 2

• ‘Minimally measurable disease’ 3
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• Misclassification risk mandates multiple reporters in trials, 
increasing costs and barriers to site delivery. Low volume excluded

• Strong case for improved response assessment, e.g. Volumetry

1. Armato et al. Med Phys 2004    2. Wang et al Oncologist 2017.  3. Nowak et al. JTO 2016 
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ü Established 
adjunctive 
staging tool 



Volumetric Tumour Quantification

Figure 4. Example of perception error. Axial computed tomography images with contrast from a patient with malignant
pleural mesothelioma with a large right pleural effusion and discontinuous areas of pleural thickening representing tumor.
Areas perceived as tumor by the two reviewers are represented by yellow (A) and red (B) contour lines, respectively, and the
resulting difference in calculated tumor volume is as depicted in the three-dimensional volume-rendered images (C).
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Areas perceived as tumor by the two reviewers are represented by yellow (A) and red (B) contour lines, respectively, and the
resulting difference in calculated tumor volume is as depicted in the three-dimensional volume-rendered images (C).
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Technologic, advances including commercially avail-
able software for volumetric CT evaluation, internet-
based systems that allow transmission and sharing of
data-dense imaging studies in ways that maintain patient
confidentiality, and improvements in radiology work flow
now enable this type of multicenter international study.
The involvement of a biostatistical center highly experi-
enced in clinical trials and in managing large data sets is
also pivotal to study feasibility. The availability of the
large high-quality IASLC MPM database using electronic
data submission will be essential for accurate clinical
correlations.

However, the current study highlights areas that
should be addressed in the planned, larger international
study. Stricter criteria for CT quality with the routine use
of intravenous contrast and retention of fine-cut CT im-
ages (!2.5 mm in thickness) will enhance radiologic
interpretation [16]. The addition of a third experienced
reference radiologist, more extensive group training in
software use, and further standardization in reporting
may reduce variations in final volume calculations.

Refinement of volumetric CT in the clinical staging of
MPM and incorporation of this into routine clinical
practice has implications that are not merely academic.
Large numbers of MPM patients are too elderly or too
frail to be considered for major surgical resections. With
an increasing range of nonsurgical treatment options for
MPM, including new chemotherapies, immunotherapy,
and novel radiotherapy approaches, accurate clinical
staging for treatment selection and an accurate assess-
ment of response have become important. For better-risk
patients, more precise methods of clinical staging are
needed to select surgical intervention and multimodality
therapy. Although other imaging modalities, such as
magnetic resonance imaging and positron emission to-
mography, have been evaluated for staging and response
assessment, CT is less costly and more widely available
[17, 18]. Therefore, validation of our results in a larger
international study will likely have a significant effect on
the management of this challenging disease.

The Malignant Mesothelioma Volumetric CT Study Group:
Valerie W. Rusch, MD1 and Michelle Ginsberg, MD1; Ritu Gill,
MD2; David C. Rice, MB, BCh3 and Jeremy Erasmus, MD3;
Harvey I. Pass, MD4 and David Naidich, MD4; Hedy L. Kindler,
MD5, Samuel Armato, PhD5, Christopher Strauss, MD5, and
Wickii Vigneshwaran, MD, MBA5; Joseph Friedberg, MD6 and
Sharyn Katz, MD6; Marc de Perrot, MD, MS7 and Demetrios
Patios, MD, BA7; and Dori Giroux, MS8, Lynn Shemanski, PhD8,
and Alan Mitchell, MS8.

1Memorial Sloan-Kettering Cancer Center, New York, NY;
2Brigham and Women’s Hospital, Boston, MA; 3University of
Texas and MD Anderson Cancer Center, Houston, TX; 4New
York University Medical Center, New York, NY; 5The University

Fig 3. Initial separation of tumor
volumes into quartiles shows that
the best correlation between tumor
volume and overall survival is
seen with three groups of average
volume measurements (91.2,
245.35, and 511.35 cm3). (Q ¼
quartile; VolCT ¼ volumetric
computed tomography.)

Table 2. Pairwise p-Value Confirmation of Visual
Observations in Figure 3

Pairwise Comparison
Pairwise Log-Rank

p Value

Minimum—Q1 vs Q1–Q2 (red vs green) 0.0018
Q1–Q2 vs Q2–Q3 (green vs yellow) 0.7350
Q2–Q3 vs Q3—maximum (yellow vs blue) 0.0639

Q ¼ quartile.

1064 RUSCH ET AL Ann Thorac Surg
VOLUMETRIC CT FOR STAGING MESOTHELIOMA 2016;102:1059–66
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Figure 4.3 Manual delineation of pleural volume at contrast-enhanced MRI using OsiriX software
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Figure 4.5 Contour mask (grey) of pleural volume in axial (Panel A) and coronal 

(Panel B) planes, created semi-automatically using Myrian® software

Manual tumour contouring 
(one every 8-10 slices)

CT Volumetry

Perfusion Tuned Tumour 
Segmentation

Tsim et al, Lung Cancer 2020MRI Volumetry
Lung Cancer 150 (2020) 12–20
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analysed for inter-observer agreement, using ICC. All statistical analyses 
were performed using GraphPad Prism v7 (San Diego, USA) and SPSS 
Statistics v22.0 (IBM, New York, USA). A p value <0.05 was considered 
statistically significant. 

3. Results 

3.1. Patient population 

58 patients were recruited and had 3 T contrast-enhanced MRI and 
contrast-enhanced CT prior to any significant pleural intervention or 
treatment. 31/58 (53 %) had a final diagnosis of MPM and were eligible 
for volumetric analyses. 31/31 (100 %) underwent MRI volumetry. 28/ 
31 (90 %) underwent CT volumetry; 3/31 (10 %) were excluded having 
had CTPA performed at emergency first presentation. The median time 
between CT and MRI was 19 (IQR 10.5–31) days. Examples of MRI and 
CT imaging acquired in the same patients are presented in Fig. 1. 

28/31 (90 %) patients were male, mean (SD) age was 76 [7] years 

and 27/31 (87 %) were asbestos-exposed. Histological MPM subtypes 
were: epithelioid (21/31 (68 %)), biphasic (4/31 (13 %)), sarcomatoid 
(5/31 (16 %)) and mesothelioma NOS (1/31 (3%)). Clinical staging was 
performed according to TNM 8 at a specialist MPM MDT. 20/31 (65 %) 
had stage IA disease, 6/31 (19 %) stage IB disease, 1/31 (3%) stage II 
disease, 2/31 (7%) stage IIIA disease, 1/31 (3%) stage IIIB disease and 
1/31 (3%) stage IV disease. 5/31 (16 %) had nodal and/or distant 
metastatic disease. 6/31 (19 %) patients subsequently completed four 
cycles of platinum/pemetrexed chemotherapy. 

3.2. Primary objective: optimum MRI segmentation method 

In the majority of patients (25/31 (81 %)) the maximum pleural SI, 
and/or the maximum SI differential between pleura and adjacent tissues 
occurred at 4.5 min post-contrast (see Fig. 2(A)). Images acquired at this 
time-point were therefore used for all volumetric analyses. Method 2 
(seed point SI +/- 99 AU) proved to be the optimum method for MRI 
segmentation based on the pre-defined scoring matrix incorporating 

Fig. 2. Contrast-enhanced MRI tumour volume segmentation in 31 patients with Malignant Pleural Mesothelioma. Panel A demonstrates an example signal in-
tensity/time curve summarising mean signal intensity measured in 15 Regions of Interest placed on representative pleura, pleural fluid, lung parenchyma and 
intercostal muscle in a patient with Malignant Pleural Mesothelioma. Peak contrast enhancement and maximal separation of these curves occurred at 4.5 min post- 
contrast administration. Semi-automated, signal intensity threshold-based segmentation of pleural volume at contrast-enhanced MRI is highlighted in blue in Panels 
B (coronal plane) and C (axial plane). Kaplan-Meier curves demonstrating median overall survival based on MRI-estimated tumour volume in patients with MPM are 
demonstrated in Panels D - G. Panel D includes all patients with MPM included in the study (n = 31), Panel E includes patients with epithelioid MPM only (n = 21) 
and Panel F includes patients with epithelioid MPM without nodal or distant metastatic disease only (n = 18). Panel G demonstrates survival based on tumour volume 
tertiles in all patients included in the study (n = 31). 

S. Tsim et al.                                                                                                                                                                                                                                     



Comparison between CT and MRI Volumetry

• 31 patients with Mesothelioma
• CT and MRI at first presentation
• Median interval: 19 days

Tsim et al, Lung Cancer 2020

Ø MRI and CT volumes correlate but do not agree
Ø MRI more strongly associated with survival
Ø MRI could be semi-automated (14 mins)
Ø CT had to be fully manual (2.5h, 225 slices/case)

• MRI probably better volumetric tool in longer term
• Enhanced post-processing for CT in the short term ?
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PRiSM: Prediction of Resistance to chemotherapy using 
Somatic Copy Number Variation in Mesothelioma
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STUDY OBJECTIVES 

1. To define a predictor-classifier of chemoresistance (defined as Progressive Disease (PD) on 
triplicate assessment by mRECIST on CT) based on Somatic Copy Number Variation (SCNV)

2. To validate any SCNV predictor in an independent cohort 
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AI Volumetry Development using multi-layered 
PRiSM Dataset
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AI Volumetry: Design and Funding

Figure 1

B

A

Figure 6: A CT slice from a subject positive for MPM. Top:
Image overlayed with the ground truth segmentation (in red).
Bottom: The corresponding predicted segmentation from
one of the seven-fold models.

edge points is inherently uncertain, and long, narrow
regions have a large proportion of edge voxels. For
example, an uncertainty of only half a voxel in the
edge delineation of the tumour can result in a total
tumour volume error as high as 60% (based on an
analysis of the tumour shapes in this cohort). Uncer-
tainty also arises from ambiguous structures within the
CT images, that appear very similar to mesothelioma.
However, this feature ambiguity is also a source of
epistemic uncertainty, since with more knowledge and
experience it may be possible to disambiguate the con-
founding features based on knowledge, for example,
by inference based on the known likelihood of a certain
feature occurring in a particular location. It is clear
that a substantial amount of the annotation process is
based on the annotator’s experience and knowledge of
how the tumour manifests. This could be expressed
as a complex set of prior probabilities, given the in-
formation contained in the image, the knowledge that
the image contains a mesothelioma tumour, and the
characteristics of such tumours.

It is perhaps remarkable that, given such a chal-
lenging task, such promising algorithm performance
can be achieved. This is exactly the kind of application

where deep learning algorithms can demonstrate their
strengths.

4.1 Principal findings

The principal findings of this study are:

1. Following three-dimensional binary closing of the
manual annotations to improve inter-slice consis-
tency, there is no significant mean volume differ-
ence between the manual and automatic measure-
ments.

2. The 95% limits of agreement between the manual
and automated measurements are between -417
and +363 cm3.

3. The mean Dice overlap coefficient was 0.64.

4.2 Critical analysis

Chen et al. achieve an Dice coefficient of 0.825, using
a semi-automated approach requiring human placed
candidate points. This is higher than our mean Dice
coefficient of 0.64. Some of this difference may arise
from the fully-automated nature of our approach, but
we also note that on some subsets of our image datasets
we achieve similarly high Dice scores. Some images
are intrinsically more difficult to annotate than others,
whether manually or automatically, and agreement will
depend on the disease characteristics in the cohort. For
example, Sensakovic et al. (Sensakovic et al., 2011)
found a median Dice coefficient of 0.68 between three
manual observers, when annotating random slices of
CT images from 31 subjects. Generally, it is easier
to annotate images containing larger MPM tumour
volumes, where a higher Dice coefficient is more eas-
ily achieved due to the lower surface-to-volume ratio.
Although these provide interesting comparisons, we
can draw only limited conclusions without a truly like-
for-like comparison of the two methods, based on the
same cohort.

Labby et al. (Labby et al., 2013) report 95% confi-
dence intervals between five observers spanning 311%
and 111% for baseline and response images respec-
tively, in area measurement of MPM tumours, across
31 subjects. Although we report volumetric measure-
ment, this is comparable to the 95% confidence in-
terval which spans 129.2% when comparing the algo-
rithm with an expert across seven-fold analysis. We
expect that we have fit the algorithm to one observer’s
interpretation of MPM, for a task where we know that
variability between readers is high, however the com-
parison also shows that confidence intervals of such
magnitude can be expected in the context of MPM
tumour measurements.
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Image overlayed with the ground truth segmentation (in red).
Bottom: The corresponding predicted segmentation from
one of the seven-fold models.
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CT images from 31 subjects. Generally, it is easier
to annotate images containing larger MPM tumour
volumes, where a higher Dice coefficient is more eas-
ily achieved due to the lower surface-to-volume ratio.
Although these provide interesting comparisons, we
can draw only limited conclusions without a truly like-
for-like comparison of the two methods, based on the
same cohort.

Labby et al. (Labby et al., 2013) report 95% confi-
dence intervals between five observers spanning 311%
and 111% for baseline and response images respec-
tively, in area measurement of MPM tumours, across
31 subjects. Although we report volumetric measure-
ment, this is comparable to the 95% confidence in-
terval which spans 129.2% when comparing the algo-
rithm with an expert across seven-fold analysis. We
expect that we have fit the algorithm to one observer’s
interpretation of MPM, for a task where we know that
variability between readers is high, however the com-
parison also shows that confidence intervals of such
magnitude can be expected in the context of MPM
tumour measurements.

• 183 CT datasets
• Training and Internal Validation (n=123)
• Blinded External Validation (n=60)

• High quality ground truth based on  
manual human tumour annotation
• 2.5 hours/scan, 225 slices/scan

• Convolutional Neural Network with a 
two-dimensional U-Net architecture 

Phase 1: £35,000

Phase 2 : £140,000



Human Ground Truth v AI Segmentation: 
Internal Validation Set (n=123)

Human
AI

Anderson et al, Bioimaging 2020



AI Performance in External Validation Set (n=60)
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• Human inter-observer ICC 0.732 (Moderate)
• AI intra-observer ICC = 1.0 (Perfect)
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Next Steps: Minimising AI Segmentation Errors

Figure 3

B

A

C

• AI significantly over- or under-segmented disease 
in 4/60 external validation cases (6.7%)

• Associated with infrequent anatomical features
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Next Steps: Calibration of Volumetric Response 
Thresholds also Essential
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• AI v Human 
volumetric 
response

• Agreement in 
20/30 (67%)

• kappa = 0.439 
(0.178-0.700) 

• AI volumetric v 
Human mRECIST 
response

• Agreement in 
16/30 (55%)

• kappa = 0.284 
(0.026-0.543)

mRECIST Thresholds:              
PR: -30% PD: +20% Uni-D

AI Volume Thresholds:
PR: -30% PD: +20% Volume



Conclusion

• First fully automated tool for volumetric segmentation of Mesothelioma
• First study to report an AI imaging output that predicts Survival
• Largest volumetry study in Meso, but small in context of Deep Learning AI
• Manuscript under review
• Further optimisation essential in a larger dataset
• CT scans from 1000 patients (at least 2000 scans) will be used in WP5.2, 

working with NCIMI and Canon
• AI PDRA post advertised. Clinical PhD involved in Ground Truth: Aug 2021   
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