



# Meso-ORIGINS feasibility study results, final design and main study update

### **Dr Katie Ferguson**

PhD Candidate, Institute of Cancer Sciences, University of Glasgow

Pleural Research Fellow, Queen Elizabeth University Hospital, Glasgow







The June Hancock Mesothelioma Research Fund





# Background

- Mesothelioma presaged by an apparent episode of Benign Pleurisy (aka Benign Asbestos Pleural Effusion (BAPE)) in some patients (Davies *et al*, EJCThS 2010 12% (95%CI 5-24%))
- True nature uncertain (?false negative sampling in some) but window of opportunity to study Benign-MPM evolution
- Focus of the CRUK Accelerator Project PREDICT-Meso
- Within PREDICT-Meso, Meso-ORIGINS will recruit and follow up patients with benign initial biopsies, generating matched Benign-MPM tissue pairs
- The current MESO-ORIGINS feasibility study addresses areas of uncertainty in study design, including sample size and surveillance protocol

### **Uncertainties prior to Feasibility Study**



- Sample size, based on a more precise estimate of evolution rate (benign biopsy with subsequent Mesothelioma ≤2 years)?
  - Target = 63 pairs needed for downstream 'omic pipeline
  - Pre-feasibility sample size = 590 (Based on 12% (5-24%) Evolution<sup>1</sup> & 10% loss to FU)
- 2. Recruitment Feasibility
  - Can sufficient numbers be recruited over 3.5 yr using the proposed eligibility criteria?
  - Assumption that 25 UK sites will be opened.
  - Target = 27 patients in 12 months from 4 UK sites (2.25 patients/month)
- 3. What form of surveillance and repeat pleural biopsy would be:
  - a) Acceptable to participants
  - b) Technically possible, particular repeat Thoracoscopy

1. Davies *et al*, EJCTS 2010

# Methods



- Multi-centre feasibility study with retrospective and prospective elements
- 4 UK Pleural Disease centres

### **Inclusion Criteria**

- History of asbestos exposure or compatible imaging, e.g. plaques
- Initial histological diagnosis (LAT/image guided) of Benign Fibrinous Pleurisy, Non-specific Pleuritis, Atypical Mesothelial Proliferation (radiological diagnosis of BAPE permitted for prospective study)

### **Exclusion Criteria**

- MPM or any secondary pleural malignancy
- Pleural infection, empyema or granulomatous pleuritis

<u>PLUS</u> for retrospective study – VATS biopsy cases permitted and two years follow up data required





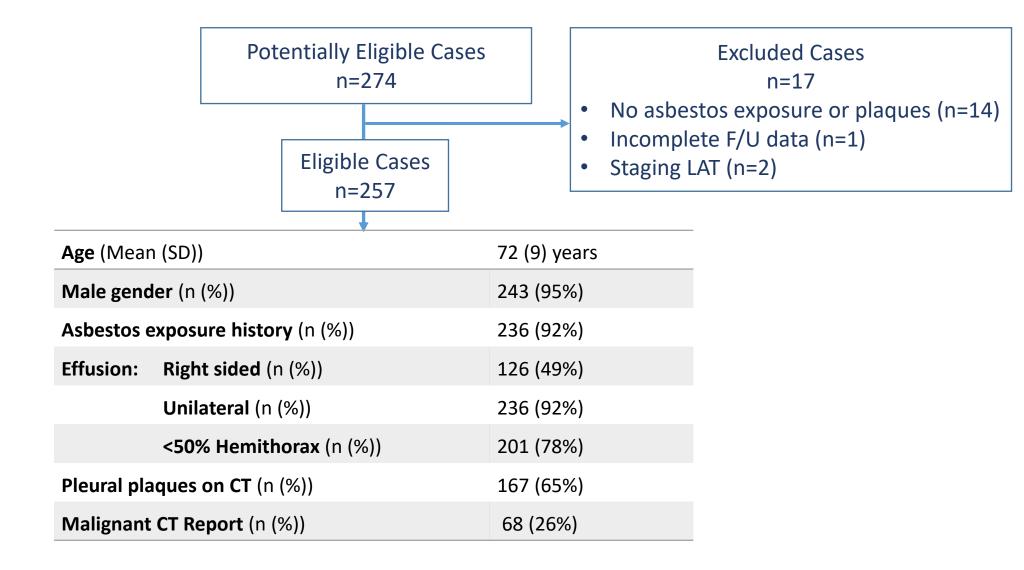
### **Objectives and Endpoints**

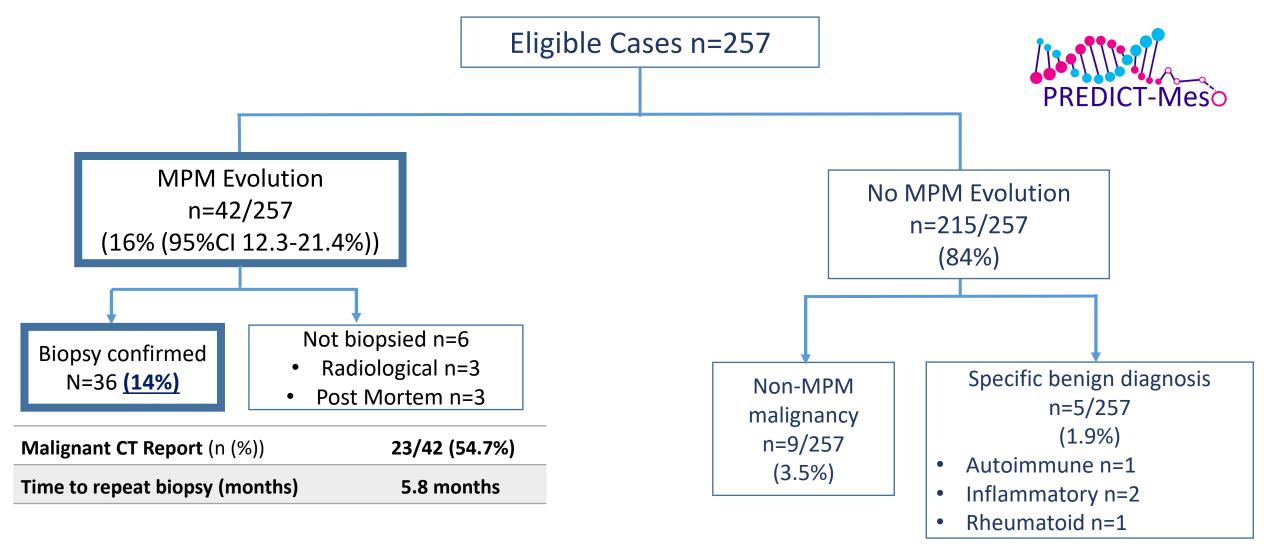
|                     | Study Objective                                                                                     | Associated End-point                                                                    |  |
|---------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Prospective Study   | <b>Primary</b> : Feasibility of recruitment based on proposed surveillance protocol (including LAT) | Recruitment rate                                                                        |  |
|                     | <b>Secondary</b> : To explore reasons for declining consent to surveillance and the acceptability   | Patient acceptability questionnaire results                                             |  |
| Retrospective Study | <b>Primary</b> : To determine the rate of MPM evolution in patients with initial benign biopsies    | Proportion of eligible patients in<br>whom MPM is diagnosed within 2<br>years of biopsy |  |
|                     | <b>Secondary</b> : identify baseline predictors of MPM transition                                   | Logistic regression model for MPM evolution using baseline data                         |  |

### **Results - Prospective Study**






| Baseline Characteristics               | n=37       |
|----------------------------------------|------------|
| Age, median (range)                    | 73 (52-88) |
| Male, No. (%)                          | 37 (100%)  |
| Effusion left sided, No. (%)           | 19 (51%)   |
| Effusion unilateral, No. (%)           | 35 (95%)   |
| Effusion <50% thorax, No. (%)          | 32 (86%)   |
| Pleural Plaques on CT, No. (%)         | 29 (78%)   |
| Benign CT according to report, No. (%) | 32 (86%)   |


- 27 completed face-to-face LAT assessment (9 unable due to COVID restrictions and 1 death)
- LAT was technically feasible in 13/27 (48%) patients who had US assessment BUT 5/13 would refuse repeat LAT <u>LAT is both feasible</u> and acceptable in 8/27 (29.6%)
- US guided biopsy was feasible in 3/27 (11%)
- Rate of BAPE to MPM progression 4/37 (10.8%)

|                        | Number of patients<br>(hypothetically) consenting (%)<br>n=35 |
|------------------------|---------------------------------------------------------------|
| Blood test             | 35 (100%)                                                     |
| Breath test            | 34 (97%)                                                      |
| CT scan                | 34 (97%)                                                      |
| MRI scan               | 35 (100%)                                                     |
| Pleural fluid aspirate | 28 (80%)                                                      |
| LAT                    | 23 (66%)                                                      |



# **Results - Retrospective Study**





#### **Regression model:**

- Univariate analysis: age (OR 1.06, (95% CI 1.02-1.11), p=0.0055) and malignant CT report (O.R 4.41, (95% CI 2.22-8.9), p <0.0001) were the only variables associated with MPM evolution</li>
- Multivariate analysis: age (OR 1.06, (95% CI 1.02-1.12), P<0.0001) and malignant CT (OR 4.78, (95% CI 2.36-9.86), p<0.0001) retained independent predictive value for MPM evolution</li>

### **Results in Context**



|                  | Benign Pleuritis<br>Cases (n) | MPM<br>Evolutions (n) | Evolution<br>Rate (%) | Entry Criteria:<br>VATS/LAT/Other | Exposure/Plaques | Median F/U<br>(months) | Country and<br>Region | Prospective or<br>Retrospective |
|------------------|-------------------------------|-----------------------|-----------------------|-----------------------------------|------------------|------------------------|-----------------------|---------------------------------|
| Arkin 2019       | 119                           | 2                     | 1.7                   | VATS                              | N/R              | 29                     | Turkey, Istanbul      | Retrospective                   |
| Bertram 2019     | 658                           | 85                    | 12.9                  | VATS                              | N/R              | 36                     | Denmark               | Retrospective                   |
| Davies 2010      | 42                            | 5                     | 12                    | LAT                               | 22               | 21                     | UK, Oxford            | Retrospective                   |
| DePew 2014       | 64                            | 3                     | 4.7                   | VATS & Open                       | N/R              | 60                     | USA, Minnesota        | Retrospective                   |
| Gunloglu 2015    | 53                            | 2                     | 3.8                   | VATS                              | N/R              | 24                     | Turkey                | Retrospective                   |
| Janssen 2004     | 208                           | 10                    | 4.8                   | LAT                               | N/R              | 9                      | Netherlands           | Retrospective                   |
| Karapathiou 2020 | 259                           | 3                     | 1.2                   | VATS & LAT                        | N/R              | 47                     | France                | Retrospective                   |
| Lin 2019         | 213                           | 13                    | 6.1                   | LAT                               | N/R              | 40                     | UK, Cambridge         | Retrospective                   |
| Metintas 2012    | 101                           | 16                    | 15.8                  | LAT                               | N/R              | 24                     | Turkey                | Prospective                     |
| Venkamp 2005     | 60                            | 3                     | 5                     | LAT                               | 22.9             | 33                     | Belgium               | Retrospective                   |
| Yang 2017        | 52                            | 5                     | 9.6                   | LAT                               | N/R              | 35                     | China                 | Retrospective                   |
| Ferguson 2021    | 257                           | 42                    | 17                    | LAT, VATS, image<br>guided Bx     | 100              | 24                     | UK                    | Retrospective                   |
| TOTAL            | 2086                          | 189                   |                       |                                   |                  |                        |                       |                                 |

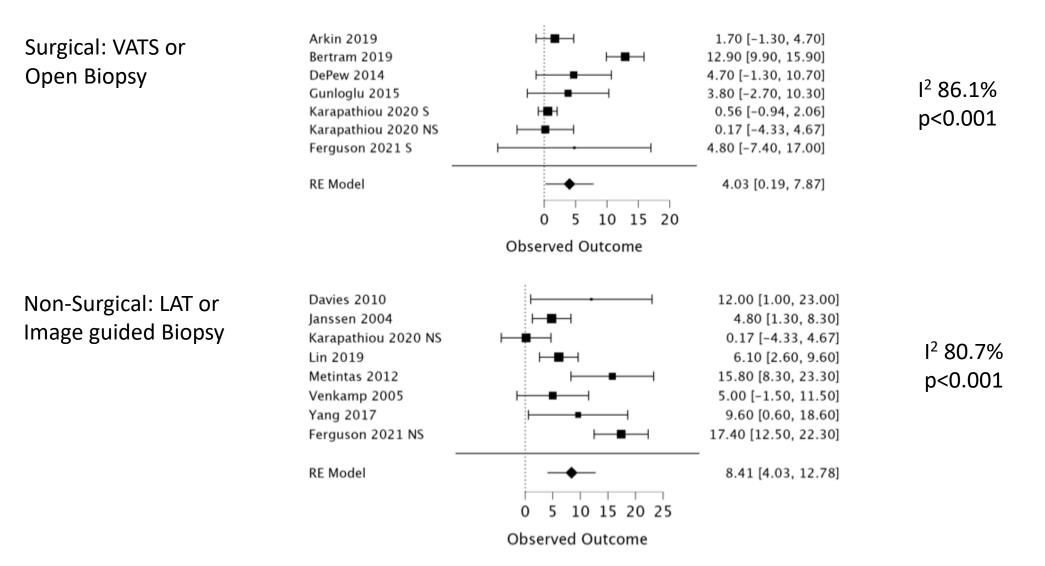

### **Results: Random Effects Metanalysis**



Arkin 2019 Bertram 2019 Davies 2010 DePew 2014 Gunloglu 2015 Janssen 2004 Karapathiou 2020 Lin 2019 Metintas 2012 Venkamp 2005 Yang 2017 Ferguson 2021 RE Model

1<sup>2</sup> 84.8%

p<0.001




1.70 [-1.30, 4.70] 12.90 [9.90, 15.90] 12.00 [1.00, 23.00] 4.70 [-1.30, 10.70] 3.80 [-2.70, 10.30] 4.80 [1.30, 8.30] 1.20 [-0.30, 2.70] 6.10 [2.60, 9.60] 15.80 [8.30, 23.30] 5.00 [-1.50, 11.50] 9.60 [0.60, 18.60] 17.00 [12.50, 21.50] 7.46 [4.24, 10.68]

| Study<br>Characteristic            | Residual I <sup>2</sup> | P-value |  |
|------------------------------------|-------------------------|---------|--|
| Surgical v Non-<br>surgical Biopsy | 81.9%                   | 0.223   |  |
| Age of Study<br>(Pre-/Post-2010)   | 81.14                   | 0.461   |  |
| Median F/U                         | 75.596                  | 0.077   |  |
| Regional MPM<br>Incidence          | Not Con                 | nputed  |  |
| Asbestos<br>Exposure               | Not Computed            |         |  |

# Results: Surgical v Non-surgical Sampling





# **Summary and Final Design**



- Based on biopsy confirmed evolution rate of 14%, the original sample size estimate (n=590) will generate > 63 Benign-MPM tissue pairs
  - Sample size therefore reduced to n=500 (assuming 10% loss to FU)
- 2. Recruitment of sufficient numbers using current eligibility criteria is feasible
  - When upscaled over 25 sites, this should deliver 500 participants
  - Frequency of Malignant CT features in Evolution cases in retrospective arm suggests initial false negatives are common these cases will not be excluded
- 3. Surveillance and repeat biopsies are generally but not universally acceptable. Repeat LAT may only be technically feasible in half of patients
  - Range of repeat biopsy techniques (LAT/VATS/image-guided) required

### Acknowledgements

#### Glasgow

Kevin Blyth Selina Tsim Laura McNaughton Carolyn MacRae Katie Ferguson Jenny Ferguson

**Bristol** Nick Maskell Hugh Walsh

### Oxford

Najib Rahman Rachael Mercer

Manchester Matthew Evison Rachael Kelly Jenny King



The June Hancock Mesothelioma Research Fund













### **Questions or Comments**







The June Hancock Mesothelioma Research Fund

